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Computation of Pseudo-Differential Operators

Gang Bao? and William W. Symes
Department of Mathematical Sciences
Rice University

Houston, Texas 77251-1892

Abstract

A simple algorithm is described for computing general pseudo-differential operator
actions. Our approach is based on the asymptotic expansion of the symbol together
with the Fast Fourier Transform (FFT). The idea is motivated by the characterization
of pseudo-differential operator algebra. We show that the algorithm is efficient through
analyzing its complexity. Some of numerical experiments are also presented.

Key words. pseudo-differential operators, fast Fourier transform, spatially varying
filters, microlocal cut-off, data processing

Abbreviated title: COMPUTATION OF PSEUDODIFFERENTIAL
OPERATORS

AMS(MOS) subject classification: 35505, 65T20, 86A22
1 Introduction

The theory of pseudo-differential operators (¥.D.0.s) has made many important contri-

butions to the development of partial differential equations. It provides a natural way to
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decompose a differential operator which may be difficult to study directly into several pieces
with simple structure. A precise way to describe propagation of singularities for differential
equations is in terms of ¥.D.0.s. Pseudo-differential operators may be viewed as spatially
varying filters with simple asymptotics at high frequencies. Pseudo-differential operators
differentiate waves and wave-like signals according to directions of propagation. Pseudo-
differential operators also arise naturally in diverse fields (often under different names!) such
as Wave Propagation, Electrical Engineering, and Geophysics.

Although the theory of pseudo-differential operators, or more generally microlocal anal-
ysis, has been well established since 60’s, little attention appears to have been paid to the
computation of pseudo-differential operators. In this paper, we present a simple algorithm

for computation of general W.D.0. actions. Our idea is based on the following characteriza-

tion of ¥.D.0.s:

Fact: The pseudo-differential operator algebra is generated by all differential operators and
all powers of the Laplacian.

More precisely, partial differential operators and many functions of these (inverse, powers,
-+ +) are included in ¥.D.O.s in the high frequency asymptotic sense.

See Kohn & Nirenberg [3] for a detailed discussion.

2 Pseudo-differential Operators

Here, we shall give a brief introduction to a class of ¥.D.0O.s. For a complete account
of U.D.0O.s as well as the calculus, the reader is referred to Taylor [5], Nirenberg [4], or

Hérmander [2].

We begin with the introduction of Fourier transform and inverse Fourier transform. The

Fourier transform acting on a “nice” function u defined in IR™ is:
Flu) =& = (2r)™" / u(z)e " dz
and the inverse Fourier transform is defined by
Fiu) = [a(g)e=tde.
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Remark. A number of algorithms for numerical computation of (discrete) Fourier transforms
have been made available. We shall use a version of the Fast Fourier Transform in our
numerical work. A detailed description may be found in Conte and De Boor [1]. See also
Van Loan [6] for the most recent development in the field.

Pseudo-differential operators are usually defined in terms of symbols, which are smooth
functions of both space and frequency variables satisfying certain estimates. More precisely,
q(z,£) is a member of the symbol class ST (IR") iff ¢(z,£) is a smooth function and for any

compact subset K of IR", and real a, 3, there exists a constant Ck 4 g, such that

|D2D{q(z,€)| < Crap(l + €])™ 1!

forall z € K and £ € R".

In this paper, we shall confine ourselves to a subclass of S7%, the class S™, which is
the most natural class and sufficient for many applications. A function ¢(z,£) is in S™ if
q(z,&) € ST and there are smooth gy, _;(z,€), homogeneous of degree m — j in ¢ for [¢| > 1,
i.€.,

Gm—i(2,76) = T gn_j(2,€), 1€]21, r>1
such that

(I(«'L',f) ~ qu—j(l',f) (21)

>0

in the sense that

N
q(fl?,f) - EQm—j(maé) € S{Y,LO_N—I ’

=0
where g, (z,¢) is called the principal symbol, or principal part of ¢(z,£) which carries the

most important information about q.

Then the operator @) defined by

Qe, Dou = [ alz,¢)i(€)edg

is called a ¥.D.O. of order m or Q € OPS™(IR™).
In particular, differential operators with smooth coefficients are ¥.D.0.s. Indeed, for

such a differential operator of order m, the corresponding symbol is a polynomial in ¢ of



degree m, and consequently is a symbol in 5™. The asymptotic expansion of a symbol, (2.1),

is unique up to smoothing operators.

3 Algorithm

In this section we describe the algorithm explicitly. Its complexity will be examined in the
section that follows. For the sake of simplicity, we shall only describe the idea of computing
two-dimensional ¥.D.0.s. Some obvious modifications may be made to compute ¥.D.0.s
of arbitrary dimension. Throughout, we shall always assume that the action of @ on u is
meaningful. The precise conditions may be found in any one of the above references.

Given the symbol ¢(z, z,{,n) of a ¥.D.O. Q(z, 2z, D, D,) € OPS™ and a function u(z, 2).

Let us assume that the asymptotic expansion of the symbol is given by

‘I(m,zwfﬂl) ~ ZQm—j(x,Z,f,Tl) (32)

20
where ¢m_j(z,2,7€,rn) = r™ g, _i(z,2,¢,n) for (J¢|, [7] > 1). Again, g, denotes the
principal symbol of g.

Knowing the asymptotic expansion of ¢ we compute the ¥.D.0. action Qu through
computing @,,,_;u for j > 0. We describe the calculation for j = 0, as it is representative.
That is we will describe an algorithm for computing the action of the principal part of a
¥.D.0.. Evidently this algorithm could be applied recursively to compute general ¥.D.O.
actions. However the principal part gives the dominant effect on high frequency inputs,
which is most important for our intended applications. Thus for us, computation of the
principal part above is sufficient.

Let ¢ = wcosh, n = wsind, w = /€% + 52, then the homogeneity of ¢, in ¢ and 7 yields
that

am(Z,2,€,1) = gu(z, 2z,wc080, wsinb) = WG, (z, 2,0)
where §,,(z, z,0) is defined to be ¢,,(z, z, cosd, sind).

Since ¢, is periodic in 6, the Fourier series expansion can be employed to give

gm(z,2,0) = Z c(z,2)e? ~ Z alz,z)e?
l=—00 I=—K/2



K/2
= 3 ¢z, 2)(cosd + isinb)' . (3.3)
I=—K/[2

It follows that from the definition

_ K/2
Qnu =~ //dfdne'(’“"") Y. whel(z,z)(cosd + isind) i (€, n)

I=-K/2
K/2
= ) Cl(l‘,z)//d{dnwmei(’€+’")(cosﬂ+i3in0)‘ﬁ(f,7))
I=—-K/2
K/2
= Y ale,F W+ in)a(e,n))
I=—K/2

where to obtain the last equality, we have used the relations cosf = {/w and sind = n/w.
Observe that w™! is the symbol of the (m — 1)/2-power of the (negative) Laplacian, while
£ and 7 are symbols of differential operators D, = —i0, and D, = —i0,, respectively.

The procedure implicit in the above formulae leads to an algorithm to evaluate Q,,u

approximately, as follows. Assume that u is sampled on a discrete grid,

Uij = w(@o+(:—1)Az,20+ (7 — 1)Az)
izl,"'aMa ]=1)aN

with spacings Az, Az > 0. Assume similarly that a sampling of §,, is given,

Qijk = Gm(zo + (i — 1)Az,20 + (§ — 1)Az, kAG)
1= 1v'°"Ma .7 = 1a' ",N, k= —I(/z, ,I{/2

with X = (M — 1)Az, Z = (N — 1)Az, the sample rates in the frequency domain are
A¢ =1/X, An =1/Z, so the (unaliased) samples of the symbols of the Laplacian, D,, and

D, are

Q= 21/ (pAE)? + (rAn)?
Zpr = 27pAL
Zpy =2wrAn

p=-M/2,--- M2, r=—-N/2,---,N/2

3



respectively.

Procedure for Computing Q,,u

1. Compute the discrete Fourier transform U of U.

2. For each 7 € {1,---,M} and j € {1,---,N}, compute the discrete Fourier transform
'-J = {Qt.J,I}l_-K/z of Qi; = {Qm,k}k..—K/z

3. Initialize (QU);; =0.0,:=1,---,M, j=1,---,N.
DO I =-K/2, K/2

a compute the inverse transform { R} }, —1,5=1 of
Qe l(ﬂpr +iZp, )I pr

for p=—M/2,---,M/2 and r = —N/2,- - -, N/2.
b accumulate
(QU)i; = (QU)i; + QusuRl,

END DO

4 Complexity Analysis

We return to the general case. The complexity will be analyzed by the number of multipli-
cations. We also make a few remarks about accuracy of the algorithm.

The direct method of computing the ¥.D.0. action is by straightforward discretization
of the definition.

Qm = [ [ anz, O)ife)e= e
= Flam(@,E)3(E)]

Let us assume that the input function is discretized on a regular d-dimensional grid, as

is the symbol ¢,. We denote by N the number of grid points in each direction, assuming

6



these are roughly similar. Assuming also that the discrete Fourier transforms are computed

using a Fast Fourier transform algorithm, we then have the following result.
Lemma 4.1 The direct algorithm has O(N*logN) complezity.

This is an immediate consequence of the well known fact that the FFT exhibits O(NlogN)
complexity, where N is the length of the input sequence.

We next discuss the complexity of the new algorithm. For simplicity, we once again
consider the 2-D case. The approximate complexity orders of the steps in the algorithm

proposed above are:

1. N2logN

2. N2KlogK

3. a. KN?logN; b. KN?2.

Hence the total complexity is O(K N?(logN + logK)) in two dimension.

In general, when the number of dimension is d, a similar calculation will yield_
Lemma 4.2 The new algorithm ezhibits O(K? 1 N¢(logN + logK)) complezity.

Remarks. The new algorithm is significantly superior to the direct method. The number
of terms K in the finite §-Fourier series approximation of ¢,, ought to be chosen so that
the sup norm error is small. Then the error in the computation of @,,, modulo compact
operators, will also be small (Taylor [5], p. 52). In particular the error will be small for
oscillatory inputs u. Note that K is completely independent of N in this regard. Thus in
effect the complexity of our algorithm is O(N%logN)!

5 Numerical Experiments

In this section, we present the results of some numerical experiments carried out with the
U.D.0. calculation algorithm. We calculated actions involving several microlocal cutoff
operators, i.e. operators whose symbols are asymptotically 1 in some conic set and asymp-

totically zero in the complement of another conic set (essential support or aperture). These
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are the simplest indecomposable order zero ¥.D.0.s. The examples exhibit some of the
interesting features of ¥.D.O.s.

We began with convolutional ¥.D.O.s, which are ¥.D.0O.s that are independent of spatial
variables. Obviously convolutional operators are natural extension of differential operators

with constant coefficients. For this class of operators, it is easy to show that

F(Qu) = Q(§)i(¢) ,

which is useful in verifying the code. In fact, according to this simple identity, one can recover
the symbol from Qu and 4. A symbol that characterizes a microlocal cutoff is specified by
Figure 1, where the symbol was designed to be a C? function. The next figure displays
the symbol function in terms of the angle §. From this one dimensional array, the ¥.D.O.
algorithm was employed to compute the action, and hence the 2- D symbol function Q. The
result, Figure 3, shows the symbol when the number of terms in Fourier series expansion
of the symbol k = 4. It is easy to see that the symbol in Figure 3 illustrates the right
direction but wrong amplitude within the aperture. As we increased k, the recovery of the
symbol became better and better. Figure 4 shows that the symbol was perfectly recovered
after several steps. Again, we want to emphasize that the number & only depends on the
smoothness of the symbol.

The next experiment concerned the rotation of apertures for convolutional operators.
The function plotted in Figure 5 is a slightly smoothed characteristic function of a circle.
We applied a ¥.D.0. cutoff whose symbol was given in Figure 6 to this function. Just
as the theory predicts, the high frequency information of the resulting function (Figure
7) was preserved within the aperture. We then rotated the symbol (Figure 8 and Figure
10), and again the high frequency information were preserved in Figure 9 and Figure 11,
respectively. These examples are only illustrative, as the discrete Fourier transform allows
a very simple and fast computation of convolution operators. Our next example is meant
to illustrate the success of our algorithm with nonconvolutional ¥.D.0O.s. Figure 12 shows
the symbol of a 2-D W.D.O. which is spatially varying (in z direction). It was generated
from ¢(z,0) = qo(8 + 80sin(72/2nqz)) Where go was given in Figure 6, 66 was selected to be

7/2, and z € [0, zp4]. Thus, as z increases, the symbol rotates smoothly, in particular the
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symbol will be equal to go as z reaches its maximum. Once again, we used the function u
in Figure 5. The result, as shown in Figure 13, agreed with the theory. Observe that the
aperture is vertical for z near 0. Then the symbol rotates as z increases, so we start to see
some high frequency horizontal components. When z is getting close to its maximum, the
symbol rotates back, and the aperture becomes vertical again.

Our final example demonstrates an important application of the ¥.D.0. algorithm to the
seismic data processing in reflection seismology. The basic objective of all seismic processing
is to convert the information recorded in a field into a form that most greatly facilitates
geological interpretation of such field. Evidently, real reflection data, which carry most
of the information of the mechanical properties of the earth, are what geophysicists most
interested in obtaining through this process. Thus, an essential object of the processing
is to eliminate or suppress all signals not associated with reflections. Figure 14 displays a
seismogram, ¢.e. the recorded seismic data at receivers on the surface of the earth after an
energy source is fired. As one can see clearly that the dark area that contains very strong
signals represents the early arrivals (direct and head waves). In the area below, there are
other signals (reflections) which are not nearly as strong as the early arrivals. Unfortunately,
the direct and head waves do not penetrate the earth, so contain no information about
the subsurface that we are interested in. The useful reflection energy is only contained in
the lower part. This can be observed more clearly if one increase the amplitude of the
seismogram as in Figure 15. The question arose: Can one remove the early arrivals and yet
keep the useful information of reflections? Applying the ¥.D.0O. computation algorithm, we
were able to design a microlocal cutoff (¥.D.0.) whose action on the seismogram is shown
in Figure 16. The result appears to be very encouraging. The amplitude of the early arrivals
is reduced dramatically, and meanwhile information of reflections is well preserved. We tried
the same ¥.D.O. filter on the resulted data set one more time to obtain Figure 17. The early
arrivals are essentially gone, while again most of the reflections are preserved. We believe
the noise left in the region where the early arrivals resided was caused by numerical scales,
hence can be eliminated. This processing technique is actually used in reflection seismology,

where it is called “f-k dip filtering”, e.g. Yilmaz [7], pp 69-78. Our ¥.D.O. algorithm yields



an accurate and efficient means of “spatially variable dip filtering”, for which we envision

numerous uses.

6 Concluding Remarks

A simple algorithm for the computation of a class of ¥.D.0O.s is introduced in this work.
We exhibit some of the features of the algorithm. The complexity analysis indicates that
the algorithm is much more efficient than the direct computation. Because of the simple
structure, various massive parallel computers may be used to implement this algorithm
so long as a fast FFT routine and fast array operations are available. In fact, some of
our numerical experiments reported in this paper were obtained by using the Connection
Machine.

We anticipate many applications of this algorithm. For example, ¥.D.0.s are expected
to play an important role in regularizing a class of ill-posed problems in multi-dimensional
wave propagation arisen naturally in seismic inversion, oil and gas exploration, and many
other related geophysical problems. Our experiment indicates the usefulness of microlocal
(or ¥.D.0.) cutoff in seismic data processing, i.e., sorting of waves according to direction in
seismic data.

Mathematically, this algorithm should provide a way to compute the so called microlocal
norms of microlocal Sobolev spaces, which in turn would help us testing the sharpness
of various results on propagation of singularities for partial differential equations. This
algorithm should also have some impact on signal processing, where ¥.D.O.s form a class of

spatially varying filters.
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